
 
Supplemental Material 

 
 

SECTION	  1.	  CONCEPTUAL	  FRAMEWORKS	  FOR	  DOSE-‐RESPONSE	  CURVES:	  	  CLASSICAL	  BINARY	  BINDING	  EQUILIBRIA
.......................................................................................................................................................................... S1	  

SECTION	  2.	  PROOF	  THAT	  COOPERATIVE	  TERNARY	  EQUILIBRIA	  IS	  ALGEBRAICALLY	  UNSOLVABLE........................ S2	  

SECTION	  3.	  ALGEBRAIC	  SOLUTIONS	  FOR	  MAXIMUM	  VALUES	  IN	  COOPERATIVE	  TERNARY	  EQUILIBRIA................ S5	  

A.	  SOLUTION	  FOR	  [B]	  AT	  [ABC]MAX ..................................................................................................................................S5	  
B.	  SOLUTION	  FOR	  [B]T	  AT	  [ABC]MAX .................................................................................................................................S6	  
C.	  	  SOLUTION	  FOR	  [ABC]MAX ...........................................................................................................................................S7	  
D.	  RATIOMETRIC	  MODEL	  FOR	  THE	  PHYSICAL	  BEHAVIOR	  OF	  BELL-‐SHAPED	  CURVE.........................................................................S7	  

SECTION	  4.	  	  A	  COMPLETE	  ANALYTICAL	  SOLUTION	  TO	  THE	  NON-‐COOPERATIVE	  TERNARY	  EQUILIBRIUM	  MODEL S9	  

A.	  SOLUTIONS	  FOR	  [A]	  AND	  [C].....................................................................................................................................S9	  
B.	  SOLUTION	  FOR	  [B]..................................................................................................................................................S10	  
C.	  SOLUTIONS	  FOR	  [AB],	  [BC],	  AND	  [ABC] ...................................................................................................................S11	  
D.	  DEFINITION	  OF	  ΦAB,	  ΦBC,	  Q1,	  AND	  Q2 ........................................................................................................................S12	  

SECTION	  5.	  UNDERSTANDING	  NON-‐COOPERATIVE	  EQUILIBRIA........................................................................ S14	  

A.	  THE	  RESOLVABILITY	  ASSUMPTION ..............................................................................................................................S14	  
[ABC]max	  Under	  Resolvable	  conditions ...............................................................................................................S15	  
TF50	  Under	  Resolvable	  conditions ......................................................................................................................S16	  
TI50	  Under	  Resolvable	  conditions .......................................................................................................................S16	  

B.	  DOMINANCE	  AND	  THE	  QUADRANT	  MODEL ..................................................................................................................S20	  
Derivation	  Of	  Critical	  Parameter	  Derivations	  Assuming	  Dominance	  Only.........................................................S22	  

[B]t,max	  Under	  Dominant	  Conditions .................................................................................................................................S22	  
[ABC]max	  Under	  Dominant	  conditions...............................................................................................................................S22	  
TF50	  and	  TI50	  Under	  Dominant	  conditions ........................................................................................................................S24	  

C.	  COMBINING	  DOMINANCE	  AND	  RESOLVABILITY	  ASSUMPTIONS .........................................................................................S26	  
Derivation	  Of	  Critical	  Points	  Assuming	  Both	  Dominance	  And	  Resolvability ......................................................S26	  
Conceptual	  Framework	  In	  Terms	  Of	  Dominant	  Points.......................................................................................S26	  

D.	  ERROR	  IN	  THE	  NONCOOPERATIVE	  FRAMEWORK	  WHEN	  THE	  RESOLVABILITY	  ASSUMPTION	  DOES	  NOT	  HOLD ............................S27	  
E.	  ERROR	  IN	  THE	  NONCOOPERATIVE	  FRAMEWORK	  WHEN	  THE	  DOMINANCE	  ASSUMPTION	  DOES	  NOT	  HOLD ................................S30	  
F.	  WHEN	  BOTH	  DOMINANCE	  AND	  RESOLVABILITY	  ASSUMPTIONS	  CANNOT	  BE	  MADE ..............................................................S32	  

SECTION	  6.	  COOPERATIVE	  TERNARY	  SYSTEMS ................................................................................................. S33	  

A.	  COOPERATIVE	  QUADRANT	  OVERVIEW ........................................................................................................................S33	  
Quadrant	  I	  Overview..........................................................................................................................................S34	  
Quadrant	  II	  Overview.........................................................................................................................................S35	  
Quadrant	  III	  Overview........................................................................................................................................S36	  
Quadrant	  IV	  Overview .......................................................................................................................................S37	  

B.	  GENERAL	  SOLUTION	  TO	  COOPERATIVE	  TERNARY	  EQUILIBRIA ...........................................................................................S38	  
C.	  UNDERSTANDING	  THE	  HEIGHT	  OF	  THE	  COOPERATIVE	  TERNARY	  COMPLEX	  CURVES ...............................................................S39	  
Derivation	  of	  an	  Approximate	  TPF	  Expression...................................................................................................S39	  
Derivation	  of	  an	  Exact	  αcrit	  Expression ...............................................................................................................S40	  

D.	  	  UNDERSTANDING	  THE	  WIDTH	  OF	  THE	  COOPERATIVE	  TERNARY	  COMPLEX	  CURVES ..............................................................S42	  
Calculating	  the	  TF50	  the	  TI50	  when	  α	  >	  αcrit .........................................................................................................S42	  

General	  TF50	  Expression....................................................................................................................................................S42	  
General	  TI50	  Expression.....................................................................................................................................................S42	  
Quadrant	  I/II	  Simplification ..............................................................................................................................................S43	  
Quadrant	  III/IV	  Simplification ...........................................................................................................................................S43	  

Calculating	  the	  TF50	  the	  TI50	  when	  α	  <	  αcrit .........................................................................................................S44	  
Quadrant	  I	  Simplification..................................................................................................................................................S45	  
Quadrant	  II	  Simplification.................................................................................................................................................S45	  
Quadrant	  III	  and	  IV	  Simplification.....................................................................................................................................S46	  



 

 
 

E.	  MAXIUM	  ERROR	  IN	  TPF	  APPROXIMATION ...................................................................................................................S47	  
Maximum	  Error	  in	  Kweak	  >>	  Kstrong	  Assumption...................................................................................................S47	  
Maximum	  Error	  in	  [X]t	  >>	  [L]t	  Assumption: ........................................................................................................S48	  
Maximum	  Simultaneous	  Error	  in	  Kweak	  >>	  Kstrong	  	  and	  [X]t	  >>	  [L]t	  Assumptions: .................................................S48	  

F.	  ERROR	  IN	  TF50	  AND	  TI50	  APPROXIMATIONS	  AT	  ΑCRIT .......................................................................................................S49	  

SECTION	  7:	  FLOWCHART	  DESCRIBING	  THE	  USE	  OF	  OUR	  MODEL ....................................................................... S51	  

SECTION	  8:	  SUPPLEMENTAL	  REFERENCES......................................................................................................... S52	  

 



 

 
 

 



 

S1 
 

Section 1. Conceptual Frameworks for Dose-Response Curves:  Classical 
Binary Binding Equilibria 

 
Figure S1. (A) Pictorial and mathematical depiction of a simple, binary binding interaction, where S is the substrate 
and R is the receptor. (B) Plot of a binary sigmoidal dose-response curve showing two critical points: the maximum 
[RS] value ([RS]max) and the [S]t value that yields half-maximal [RS] formation (EC50). The EC50 can be determined by 
the simple expression shown(1). (C) A zone-based framework to understand the behavior of binary dose-response 
curves. Zone I: When the KRS is the dominant parameter (KRS >> [R]t), the EC50 = KRS. Zone II: When the 
concentration is the dominant parameter ([R]t >> KRS), the position of the saturation point is equal to the 
concentration.    

In order to develop a conceptual framework for ternary complex equilibria we needed to 
understand what exactly a “conceptual framework” was. To do this we, we did an extensive 
search of the literature to compile the theoretical results that have led to the complete 
understanding of binary complex sigmoidal dose-response curves (Figure S1). In this manner we 
hoped to not only understand the theoretical requirements to developing a “conceptual 
framework” for ternary complex bell-shaped curves but also build that framework on concepts 
analogous to those used in binary binding equilibria. 

In general, binary binding equilibria treat the amount of binding between a receptor (R) 
and a substrate (S) where the relative energetic favorability of binding is described by the 
dissociation constant, KRS  (Figure S1A). The formation of the complex (RS) generally correlates 
with some biological event and as a result the data curves of the most interest plot the amount of 
complex (or alternatively the % biological response) versus the concentration of substrate, [S]t  
(Figure S1B). These s-shaped curves have been conceptualized in terms of two critical points: 
the EC50 (Effective Concentration 50%, or concentration of ligand (dose) which elicits a 50% 
maximal binding) and a saturating height, [RS]max (Figure S1B). It has been shown that the EC50 
is equal to KRS + [R]t/2 whereas [RS]max is equal to [R]t (1, 2). 

The relative values of the two measurable binary binding parameters – KRS and [R]t – 
allow for binary systems to be divided into two zones of experimental conditions (Figure S1C). 
When a system has a “dominant” dissociation constant (KRS >> [R]t), it is classified as Zone I 
(also known as Langmuir-Hill conditions), and EC50 = KRS. When a system has a “dominant” 
concentration ([R]t >> KRS), it is classified as Zone II (also known as saturating conditions), and 
the position of the inflection point of the curve (EC100, or [S]t,max) is equal to [R]t. These zones 
are the two possible limiting cases in a binary equilibrium, and derivation of simple expressions 
defining them is contingent on the existence of an exact analytical solution (1). In the sections 
that follow we: (1) Derive a set of exact analytical solutions for non-cooperative and cooperative 
ternary complex equilibria and (2) Use these exact analytical solutions to develop a conceptual 
framework based on “critical points” analogous to EC50 and [RS]max for binary binding curves. 
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Section 2. Proof that Cooperative Ternary Equilibria is Algebraically 
Unsolvable 

 
Figure S2. (A) The Cooperative Ternary Complex Equilibrium. (B) Unsolvability proof. A specific example was 
obtained by substituting parameter values into the [ABC] quintic (eq S13). Second, reducibility and solvability tests 
were applied to show that this example was algebraically unsolvable. Thus, a specific counter-example was used to 
prove the general unsolvability of [ABC]. 

The conservation of mass equations:  

  [A]t = [A]+ [AB]+ [ABC],  (S1) 

  [B]t = [B]+ [AB]+ [BC]+ [ABC],  (S2) 
and 

  [C]t = [C]+ [BC]+ [ABC].  (S3) 
as well as equations derived from the law of mass action: 

 
(S4) 

 
(S5) 

and 

 
(S6) 

describe the cooperative ternary complex model shown in Figure S2.A. Attempting to solve this 
system of equations for any solution concentration ([A], [B], [C], [AB], [BC], or [ABC]) as a 
function of measurable parameters (KAB, KBC, [A]t, [B]t, and [C]t) and cooperativity (α) leads to  
large quintic polynomials (not shown). In the following proof (Figure S2B), we identify a 
specific case for which these expressions are unsolvable, demonstrating that the cooperative 
ternary complex model is not generally analytically solvable for [ABC] in terms of [B]t.   

To obtain the quintic equation in terms of ABC, we first rearrange eqs S4-6, solving for 
[AB], [BC], and [B], respectively: 

 

(S7) 

 

(S8) 

and 

 

(S9) 

By substituting these equations into eqs S1-S3, we obtain 
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(S10) 

  
[B]t =

KABKBC [ABC]
α [A][C]

+
KBC [ABC]

α [C]
+

KAB[ABC]
α [A]

+ [ABC],  
(S11) 

and 

 
(S12) 

By solving eqs S10 and S12 for [A] and [C], respectively, and then substituting these into 
eq S11 and solving for [ABC], we obtain the following quintic polynomial: 

 

(S13) 
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A polynomial ƒ of the form 

 (S14) 
such that n = 5 is insoluble if it can be shown to be irreducible and have exactly three real roots. 
A specific case of the [ABC] quintic polynomial (eq S13) – where [A]t, [B]t, [C]t, KAB, KBC, and 
α are given the integer values 2, 1, 1, 1, 1, and 2, respectively – will be tested for these 
properties. The substituted polynomial 

 2[ABC]5 − 20[ABC]4 + 74[ABC]3 −119[ABC]2 + 80[ABC]−16  (S15) 
can be converted into a monic polynomial by first multiplying by an

n-1 = 24 and then substituting 
[ABC]/an = [ABC]/2 for [ABC]. The resulting monic quintic polynomial is 

 [ABC]5 − 20[ABC]4 +148[ABC]3 − 476[ABC]2 + 640[ABC]− 256.  (S16) 

It has been shown that a polynomial ƒ(X) is irreducible over the set of integers (ℤ) when 
P(ƒ) > 2n, where n is the degree of polynomial f, and  

   	   P( f ) = o#{m ∈Z | f (n) = ±p}  (S17) 
such that p is a prime.(3) The arguments -29, -23,-13, -9, -7, -5, 1, 11, 19, 21, and 25 yield values 
for eq S16 of -38685473, -14100659, -1356689, -342733, 143651, -49481, 37, 14407, 724879, 
1368377, and 3983869, respectively, and each of these values is a prime. Thus, it follows that eq 
S16 is irreducible over ℤ. Gauss’s Lemma states that if a polynomial in ℤ[X], irreducible over ℤ, 
is considered in ℚ (where ℚ is the set of rational numbers), it will be irreducible over ℚ[X](4). 
Thus, eq S16 is irreducible over ℚ. 

For a monic, irreducible polynomial of degree p (where p is a prime) that has coefficients 
in ℚ, it has been shown that the Galois group of the polynomial is equivalent to the symmetric 
group Sp when the polynomial has exactly two zeros in ℂ \ ℝ, where ℂ is the set of complex 
numbers and ℝ is the set of real numbers.(4) Because the symmetric group S5 is insoluble, any 
quintic with exactly three real roots must be insoluble. The roots of eq S16 are 0.671, 2.410, 
3.037, 6.941 - 1.979i, and 6.941 + 1.979i.  Thus, eq S16 is insoluble by radicals and the symbolic 
eq S13, of which eq S16 is a case, must be insoluble by radicals as well. 
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Section 3. Algebraic Solutions for Maximum Values in Cooperative Ternary 
Equilibria 

A. Solution for [B] at [ABC]max 

Rearranging eqs S1 and S6 provides expressions for [A] and [C] in terms of the variables 
[ABC] and [B]: 

 

(S18) 

and 

 

(S19) 

Substitution of eqs S18-19 into eq S6 and solving for [ABC] provides a ratio between first-order 
terms, 

 
(S20) 

and rearranging this expression affords a quadratic in [ABC]:   

 
(S21) 

Partial differentiation of eq S21 with respect to [B] then provides 

 

(S22) 

At [ABC]max, d[ABC]/d[B] = 0, and this equation simplifies to 

 

(S23) 

since [ABC] is, by definition, greater than zero. Because this equation only applied at the 
maximum value of the ternary complex ([ABC]max), the expression for [B] derived below only 
applies at this maximum, and is termed [B]max. Differentiation of eq S23 yields   

 
(S24) 

which can be rearranged to  

 
(S25) 

then 

 
(S26) 

which simplifies to 
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 (S27) 

This simple expression, which relates [B]max – the concentration of unbound B at which 
[ABC] is maximized – to equilibrium dissociation constants KAB and KBC, was first derived by 
Perelson and coworkers in 1981(5). 

B. Solution for [B]t at [ABC]max 
Subtracting eq S2 from eqs S1 and S3 yields 

 
(S28) 

and 

 
(S29) 

respectively. Substituting eq S27 into eqsS28 and S29, then provides 

 
(S30) 

and 

 
(S31) 

respectively. Because [B] is equivalent to the root of KAB·KBC, only at the ternary complex 
maximum, the expression for [B]t derived below represents the [B]t value at which the ternary 
complex is highest; we refer to this value as [B]t,max. Rearranging eq S30 to  

 
(S32) 

and adding this to eq S31 enables cancellation of [A] and [C] terms, resulting in 

 
(S33) 

Solving for [B]t,max provides an expression as a function of [A]t, [C]t, KAB, and KBC: 

 
(S34) 

Notably, this expression lacks the cooperativity term (α), indicating that [B]t,max retains the same 
value even in highly cooperative systems. Different forms of this equation have also been 
reported recently (28, 52).  

The form of eq S34 is a weighted average of the parameter sums associated with the 
binding of A to B ([A]t + KAB) and B to C ([C]t + KBC). Therefore, these parameters sums each 
must occur on alternate sides of [B]t,max (Figure S3). This implies that each binding event can be 
associated with one side of the ternary complex curve. This “separability” will be further 
explored in later sections. Note that because the ABC ternary complex is symmetric, we 
arbitrarily define ([A]t + KAB) ≤ ([C]t + KBC).   
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Figure S3.The parameter sums associated with each binding event [([A]t + KAB) and ([C]t + KBC)] must occur on either 
side of [B]t,max. This implies that each binding event can be “resolved” to separate sides of the curve. 

C.  Solution for [ABC]max 
Substituting eq S27 into eq S21 provides  

 

(S35) 

which can be simplified to yield   

 

(S36) 

An expression for [ABC]max – the concentration of ternary complex when [B]t = [B]t,max – 
can easily be derived from this equation using the general quadratic formula: 

 

(S37) 

It is worth noting that this relationship depends on cooperativity ( ), unlike the position 
of the maximum ([B]t,max, eq S34). This observation is consistent with prior observations by 
Perelson, Whitty, and Whitesides in related systems (5, 6). Different forms of this equation have 
also been reported recently (7, 8). 

D. Ratiometric model for the physical behavior of bell-shaped curve 
Equations S7 and S8 provide a semi-quantitative, phenomenological explanation for 

autoinhibition, or the “prozone effect”, in ternary equilibria (Figure S4A). Multiplying eq S7 by 
eq S8 yields 

 
(S38) 

and replacing [B] with eq S27 for [B]max yields 
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(S39) 

This equation implies that the product of the binary species ([AB]·[BC]) and the free 
species ([A]·[C]) are equal when [B]t = [B]t,max. In phenomenological terms, the value of [B]t,max 
can be understood as that at which the activities of free and binary solution species are in balance 
(Figure S4B). Perturbation of the system through the addition of B, for example, will induce 
consumption of A and C and the decomposition of ternary complex into constituent binary and 
free species. Overall, then, [AB]·[BC] will increase while [A]·[C] decreases, corresponding to 
the “autoinhibitory,” or left, portion of the curve. The left region of the binding curve can be 
understood in similar terms. 

 
Figure S4. (A) The bell-shaped dose response of ternary complex equilibria can be conceptually understood as 
representing a balance between two extremes: too little B results in no ternary complex formation (far left) and too 
much B out-competes ternary complex formation (far right). Thus, an intermediate amount of B achieves maximal 
ABC formation. (B) This conceptual model finds quantitative grounding in the form of the ratio of the binary to free 
species at equilibrium.  In this section we show that when this ratio equals unity (and thus the “activities” of the free 
and binary species are balanced), maximal [ABC] forms. 
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Section 4.  A Complete Analytical Solution to the Non-Cooperative Ternary 
Equilibrium Model 

A. Solutions for [A] AND [C] 
Replacing α with unity in eq S6 reflects the special case in which the ABC complex 

forms without cooperativity; that is, when the A–B and B–C binding events are completely 
independent of one another. This substitution simplifies eq S13 into a quartic equation. Because 
a general solution exists for quartic polynomials (9), it follows that a general solution must also 
exist relating [ABC] to measurable parameters for non-cooperative, ternary equilibria.  

Because the form of the general quartic equation is very complex, we sought alternative 
means to simplify the solution for [ABC].  Replacing [AB], [BC], and [ABC] in eqs S1-3 using 
eqs S4-S6, and substituting α with unity, we obtained the following conservation of mass 
equations in terms of the free concentrations of A, B and C: 

 
(S40) 

 
(S41) 

and 

 
(S42) 

 Rearranging and factoring the right-hand side of eqs S40-41 makes clear that the 
contribution of [B] and [C] to both equations is exactly the same: 

 
(S43) 

and 

 
(S44) 

Combining eqs S43 and S44 using the  terms results in a 2nd order 

polynomial in the concentration of unbound A ([A]), 

 (S45) 

This can be solved using the quadratic formula to yield 

 
(S46) 

and then rearranged to  

 
(S47) 

Only one form of the radical gives physically reasonable results,  

 
(S48) 
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and this is identical in form to the exact expression for [A] in binary A–B equilibria. One can 
rationalize this behavior for noncooperative ternary equilibria because A–B and B–C binding 
events are completely independent of one another, such that the presence of C should not affect 
A–B binding and vice-versa.  

In an analogous manner, the equivalent equation for the equilibrium concentration of 
unbound C can be derived:  

 
(S49) 

 

B. Solution for [B] 
Solving eq S44 for [B] provides 

 

(S50) 

which can be rearranged to 

 
(S51) 

Substituting [A] using eq S48 provides 

 

(S52) 

Rearranging this equation yields the following expression for [B]: 

 

(S53) 

The conjugate of the radical term can be used to rationalize the denominator, 

 

(S54) 

and further simplification and rearrangement yields 

 

(S55) 

The portion of the equation originating from the [A] term becomes identical to the expression for 
the equilibrium concentration of free [B] in a binary A–B equilibrium: 
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(S56) 

After repeating this same procedure (analogous to eqs S52 through S57) for the
 term in eq S51, the concentration of free B reduces to the following expression:  

 

(S57) 

C. Solutions for [AB], [BC], AND [ABC] 
We can now solve for the concentrations of binary and ternary complexes at equilibrium 

in terms of measurable parameters by replacing [A], [B] and [C] in eqs S7-9 with the solutions 
derived above.   

An expression for [AB],  

 
(S7) 

can be obtained by multiplication of eqs S48 and S57, divided by KAB, which yields 

 

 (S58) 
after simplification. An expression for [BC], 

   
(S8) 

can be obtained in terms of measurable parameters by multiplying eqs S57 by S49, dividing by 
KBC, and simplifying to yield 

  

 (S59) 
after simplification. Finally, to obtain an expression for the ternary complex, 

 
(S60) 
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as a function of measurable parameters, the product of eqs S48, S57, and S49 can be divided by
, yielding 

 

  

(S61) 
after simplification. 

D. Definition of ϕAB, ϕBC, Q1, and Q2 
Each of the two quadratic roots in the numerator of eq S61 exclusively contain terms 

corresponding to either A–B or B–C binding interactions, and are given the names ϕAB and ϕBC, 
respectively: 

 
(S62) 

and 

 
(S63) 

The concentrations of unbound A and C ([A] and [C]) can also be defined as  
 (S64) 

and 
 (S65) 

Equations S62–S63 (defining ϕAB and ϕBC) and eqs S64–S65 are identical to expressions 
for [AB], [BC], [A], and [C] in binary binding equilibria, respectively. In this context, ϕAB and 
ϕBC in non-cooperative ternary equilibria can be understood physically as representing the total 
amount of A or C present in the bound state, or  

 (S66) 
and 

 (S67) 

In this light, the equations for [B], [AB], [BC] and [ABC] can be viewed as joint 
independent probabilities. Thus, expressing eq S61 in terms of ϕAB and ϕBC and normalizing by 
[A]t provides 

 
(S68) 

such that the fraction of A engaged in ternary complex equals the fraction of A 

bound to B multiplied by the fraction of B bound to C . Stated differently, 

the probability that both B and C are bound to A is equal to the product of the 

probabilities that B is bound to A and that B is bound to C .  
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The fraction of A that is bound to only B  is equal to the product of the 

probabilities that B is bound to A and that B is not bound to C , or 

 
(S69) 

Defining each of the fractions containing ϕ in eq S68 as Q1 and Q2 enables a fully normalized 
treatment of [ABC] and constituent binary interactions: 

 
(S70) 
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Section 5. Understanding Non-Cooperative Equilibria 

A. The Resolvability assumption 
For non-cooperative ternary equilibria, the concentration of ABC equals the product of 

two quadratic roots, as outlined above. We can further simplify this mathematical relationship by 
applying two limiting assumptions that are frequently satisfied in experimental and physiological 
systems: “resolvability” and “dominance.”  The following section details how these limiting 
assumptions simplify eq S61 in terms of critical points ([B]t,max, [ABC]max, TF50, and TI50).  

 
Figure S5. (A) We define “resolvable conditions” as satisfied when the higher plateaus of Q1 and Q2 overlap at 
[B]t,max.  (B) The parameter sums associated with each binding event [([A]t + KAB) and ([C]t + KBC)] must occur on 
either side of [B]t,max.  This implies that the binding events can be “resolved” to separate sides of the curve. 

As illustrated in Figure S5, under conditions where plateaus of Q1 and Q2 overlap at 
[B]t,max, each constituent binary binding event can be mathematically and conceptually associated 
with a different side of the curve. Such conditions are termed “resolvable”. More specifically, the 
Q1 term is identical to a normalized A–B binding curve at increasing concentrations of B. At 
high concentrations of B total, this function increases and plateaus at a value of 1, which 
indicates quantitative/complete binding of B to A (Figure S5A). The higher plateau of the Q2 
term occurs at low concentrations of B total (Figure S5A).   

For the purposes of this discussion, we assume a system is resolvable if the parameter 
sums differ by more than one order of magnitude. Under these conditions, the plateau regions of 
Q1 and Q2 overlap to a sufficient extent to treat the A–B and B–C binding events independently, 
as illustrated in Figure S5. Under such conditions, [ABC] predominantly reflects the behavior of 
Q1 for values of [B]t less than [B]t,max, and it reflects Q2 at values greater than [B]t,max. Resolvable 
systems can be envisioned to behave physically as depicted in Figure S6, such that full saturation 
of the limiting terminal species (A in this discussion) occurs at a value of [B]t lower than those at 
which autoinhibition is observed. As can be seen in Figure S6A, the maximal ternary complex 
plateau can be viewed as a state with saturation of one side of the complex (A saturated with B).  
After this point, any additional B added will compete with AB for binding to C.  As long as the 
majority of C is not bound, this competition is negligible. Once B begins to saturate C, however, 



 

S15 
 

this competition becomes pronounced as excess free B prevents the formation of ternary 
complex. 

 
Figure S6. (A) When the plateaus of the Q1 and Q2 overlap at [B]t,max, the binding events can be resolved to separate 
sides of the non-cooperative ternary complex curve. TF50 represents half-saturation of the A side of the ternary 
complex, [B]t,max represents saturation of the same side, and TI50 represents half-saturation of the C side of the 
ternary complex. (B) Summary of equations describing the critical features of resolvable curves derived in this 
section.  

[ABC]max Under Resolvable conditions 
Under resolvable conditions, [ABC]max simplifies to the product of the y-axis values of 

the plateau regions of ϕAB and Q2 (Figure 5A). The former of these plateaus is obtained as the 
limit of ϕAB at infinity, 

 
(S71) 

An expression for the y-axis value of the higher Q2 plateau is obtained by recognizing that the 
ϕBC term in Q2 is equivalent to [BC] in a binary B–C equilibrium, or 

In a B–C binary system (i.e., no A species is present), the total concentrations of both species can 
be represented as  

 (S73) 
and 

 (S74) 
Equation S72 can be substituted into the above two equations to yield 

 
(S75) 

and 

 
(S76) 

As [B]t approaches 0 (i.e., where the Q2 plateau occurs), [B] and [BC] must also approach 
0 (eq S73). Therefore, the free concentration of [C] approaches the total concentration of [C]t as 
the amount bound to B ([BC]binary) also approaches zero in eq S74. Stated alternatively, 

 (S77) 
and thus 

 (S78) 

 
(S72) 
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in the higher plateau of Q2. Substitution of eq S78 into eq S75 and solving for the free 
concentration of B yields 

 
(S79) 

Substituting eqs S78 and S79 into eq S72 yields 

 

(S80) 

which is an expression for ϕBC in the higher plateau of Q2. Thus,  

 

(S81) 

As stated above, the value of equals the product of the y-axis values of the 
higher plateaus of ϕAB and Q2, which have been obtained for each of these functions at the limits 
of infinity and 0, respectively. Thus, 

 
(S82) 

where the R superscript denotes resolvable conditions. 

TF50 Under Resolvable conditions 

Under resolvable conditions, the value of the  is equal to the value of [B]t where ϕAB 
is half maximal. Because ϕAB can be defined using the system of equations describing binary 
equilibria, we use a description of the A–B binary half-maximum point to derive . 
Fractional binding in binary A–B binding equilibria is  

 

(S83) 

To obtain the , we must convert the free concentration of  B to the measurable 
parameter [B]t. Because [AB] is known to be exactly [A]t/2 at the half-maximum, we can 
substitute the free concentration of B with [B]t – [AB] = [B]t - [A]t/2, resulting in 

 

(S84) 

Solving the last equivalence in eq S84 for [B]t, we arrive at  

 
(S85) 

TI50 Under Resolvable conditions 

The  concentration, being solely defined by the parameters associated with Q2, can 
be expressed in terms analogous to binary B–C binding equilibria, where the fractional amount 
of binding will be half maximal at half the Q2 maximum (the higher plateau),  
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(S86) 

Thus, 

 
(S87) 

at the . Solving this for [BC] yields 

 (S88) 

Utilizing the conservation of mass equation for a B–C binary equilibrium ([B]t = [B] + 
[BC]) and the mass action equation (eq S8), the fractional amount of B–C binding,  

 

(S89) 

In a B–C binary system, [C]t = [BC] + [C]. Using this equivalence, we can replace the [C] term 
in the above expression and substitute eq S88 for [BC]. This yields  

 

(S90) 

Both the latter expression above and eq S87 are equivalent to the fractional amount of B–
C binding ([BC]/[B]t) at the half maximal point. Setting these two expressions equal yields 

 

(S91) 

This equation can be simplified by multiplying both sides by 2 and the right side of equation by 
2/2, 

 

(S92) 

By consolidating fractions in the numerator and denominator of the right hand side of the 
equation, we obtain 

 

(S93) 

Cancelling out the  terms from the numerator and denominator yields  

 
(S94) 

Cancelling out [C]t on both sides of the equation, 



 

S18 
 

 
(S95) 

cross-multiplying, 

 (S96) 
combining like terms, 

 (S97) 
and rearranging provides 

 (S98) 
Solving the above equation for [B]t then yields 

 
(S99) 

In an irresolvable system, these expressions for  and  will over- and 
underestimate, respectively, the true values, such that 

 
(S100) 

and 

 
(S101) 

These expressions are also related to the parameters sums, which frame [B]t,max,(Figure S3): 
 (S102) 

Based on the form of eqs S100-102, the following expression ranking must hold:  

 
(S103) 

Thus, the parameter sums are bounded by the , , and [B]t,max (Figure S7), or 

 (S104) 

 

 
Figure S7. The A–B parameter sums ([A]t + KAB) are bounded by the TF50 and [B]t,max; the B–C parameter sums ([C]t 
+ KBC)] are bounded by [B]t,max and the TI50.  
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Under resolvable conditions, the parameter sums can provide simple approximations for 
the TI50 and TF50, 

 
(S105) 

and 

 
(S106) 

These estimates can be used to understand non-cooperative curves when dominance (see next 
section) breaks down.
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B. Dominance and the Quadrant Model 
The behavior of quadratic roots of the kind found in eq S61 can be simplified when either 

measurable parameter (e.g., [A]t  or KAB) is present in large excess over the other (31). For 
example, in binary equilibria (Figure S8A), when [A]t << KAB, the value of [A]t at half-maximal 
complex formation (i.e., the EC50) approximates the binding constant (Figure S8BI). Indeed, 
consideration of such limiting behavior forms the conceptual basis of many mathematical models 
used in enzyme kinetics and pharmacology (e.g., Michealis-Menton, Hill). When [A]t >> KAB, on 
the other hand, the saturation point can be used to determine the stoichiometry of a complex 
(Figure S8BII). In general, when one parameter is greater than the other by more than an order of 
magnitude, the larger parameter tends to dominate the behavior of ϕAB, giving rise to the binding 
curves in Figure S8B.  

 
Figure S8. Physical Framework for Binary Binding Equilibria (A) General equilibrium scheme describing binary 
binding equilibria. (B) The shape of binary binding curves can be understood in terms of the larger binding 
parameters KAB or [A]t. When KAB is dominant (I) it approximates the position of the half-saturation point (closed 
circle) of the curve, as is assumed in Langmuir and Hill models. When [A]t is dominant (II) it approximates the 
saturation point (open circle) of the curve. The latter conditions have been used classically to determine binding 
stoichiometry. 

The assumption of “dominance” applied to ternary complex formation gives rise to 4 
limiting scenarios (Figure S9), which can be arrayed in quadrants as follows: [A]t, << KAB, [C]t 
<< KBC (Quadrant I); KAB << [A]t, [C]t << KBC (Quadrant II); [A]t, << KAB, KBC << [C]t (Quadrant 
III); and KAB << [A]t, KBC << [C]t (Quadrant IV). Expressions for the TF50 and TI50 correspond to 
values of [B]t leading to half-maximal ternary complex concentration on the left and right sides 
of binding curves, respectively. Note that, by convention, we assign A and its respective Kd to be 
the terminal component for which the quantity KAB + [A]t is less than or equal to the quantity KBC 
+ [C]t. Under both irresolvable conditions in general and resolvable conditions in particular, the 
critical values describing non-cooperative curves are summarized in Table S1. 



 

S21 
 

 

 
Figure S9. A. The equations for [B]t,max (open circles) are simple functions of the dominant parameters, which are 
insensitive to the presence or absence of resolvability. B. The equations for the TF50 and TI50 (closed circles) are 
simple functions of the dominant parameters when both the assumptions of dominance and resolvability are made. 

Table S1. Critical values for non-cooperative ternary equlibria assuming dominance without resolvability as well as 
both dominance and resolvability. 
DOMINANCE	  ASSUMPTION	  ALONE:	  

Q [B]t,max [ABC]max TF50 TI50 

I 
 

KABKBC  

 

  

II  
  

 

III  
  

 

IV 
    

 

BOTH	  DOMINANCE	  AND	  RESOLVABILITY	  ASSUMPTIONS:	  

Q [B]t,max [ABC]max TF50 TI50 

I 
 

KABKBC  
 

  

II     

III     

IV 
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Inspection of Table S1 reveals that the [B]t,max equations are simple and unaffected by the 
presence or absence of resolvability (Figure S9A). Expressions for TF50 and TI50 values, on the 
other hand, are quite complex under conditions of dominance alone, and simplify on application 
of resolvability conditions (Figure S9B). The error associated with each of these assumptions 
(dominance alone and both dominance/resolvability) are derived below. 

Derivation Of Critical Parameter Derivations Assuming Dominance Only 
The critical points for each quadrant were obtained by applying the limits associated with 

each quadrant to the general equations for [B]t,max, [ABC]max, the TF50, and the TI50, as follows. 

[B]t,max Under Dominant Conditions 

Starting from the general equation for [B]t,max, 

 
(S34) 

application of each dominance assumption yields simplified forms, as follows. For Quadrant I,   

 
(S107) 

For Quadrant II, 

 
(S108) 

For Quadrant III, 

 
(S109) 

Note that in Quadrants II and III, [B]t,max = [A]t and [B]t,max = [C]t, respectively (Figure S9BII-
III). In Quadrant IV, the maximum is an indeterminate average of [A]t and [C]t: 

 
(S110) 

Because the Quadrant IV assumptions provide no insight into the values of KAB and KBC, [B]t,max 
can occur anywhere between [A]t and [C]t, as shown in the following analysis: 

 
(S111) 

and 

 
(S112) 

[ABC]max Under Dominant conditions 

Quadrant I. Starting from the general equation for [ABC]max in non-cooperative 
systems, 

 
(S113) 
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for Quadrant I systems that the height of [ABC]max << [A]t (this is based on the TPF, discussed in 
Section 5), and therefore, that the term in eq S113 can be disregarded, resulting in 

 
(S114) 

Kd values are much greater than concentrations, [A]t and [C]t, are expected to make little 
contribution to the [ABC]max coefficient, and can be removed, resulting in 

 
(S115) 

Solving this for [ABC]max yields 

 

(S116) 

Quadrant II.  Based on TPF (see Section 5), the assumption that [ABC]max << [A]t also 
holds for Quadrant II. Thus, we begin with eq S114, 

 
(S114) 

and make the additional assumption in Quadrant II that KAB and [C]t make minimal contributions 
to the coefficient of the [ABC]max term, yielding  

 (S117) 
Solving this equation for [ABC]max affords 

 
(S118) 

Quadrant III.  Given the Quadrant III assumption that [A]t << [C]t, and because 
[ABC]max must be less than or equal to [A]t (the limiting reagent) by the law of mass action, the 

cannot appreciably contribute to the left hand side of eq S113, again affording 

 
(S114) 

Furthermore, based on the Quadrant III assumptions, KBC and [A]t should make minimal 
contribution to the coefficient of the [ABC]max term, which yields 

 (S119) 
and solving this equation for [ABC]max yields 

 
(S120) 

Quadrant IV. In this quadrant, the concentration of [ABC]max can be comparable to [A]t 
and [C]t, so the  term must be maintained. The binding constants, however, do not 
appreciably contribute to the coefficient of the [ABC]max term under the assumptions of Quadrant 
IV, simplifying eq S113 to 

 (S121) 
Factoring this provides 

 (S122) 
The only physically reasonable solution for [ABC]max in this equation is the concentration of 
limiting reagent, which is [A]t by convention; thus  
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 (S123) 

TF50 and TI50 Under Dominant conditions 

To obtain equations for the TF50 and TI50 for each quadrant, we first set α = 1 and solved 
eq S13 for [B]t to obtain an equation for [B]t as a function of [ABC]. By solving this equation 
with the quadratic formula, we obtained an expression for the left hand side of the curve (the 
subtracted root, containing the TF50) and the right hand side of the curve (the summed root, 
containing the TI50): 

 

(S124) 

To simplify these equations using the dominance assumptions, we first substituted the 
quadrant-specific [ABC]max value (see Table S1) divided by two (to specify the half-maximal 
point) and then took the limit of these results as the non-dominant parameters approach zero.  

Quadrant I.  

 

(S125) 

After simplification, the limits of eq S124 taken above yield 
 (S126) 

 

 

(S127) 

After simplification, the limits of eq S124 taken above yield 

 
(S128) 

Quadrant II. 
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(S129) 

 
(S130) 

 

 

(S131) 

 (S132) 

Quadrant III.   

 

(S133) 

 
(S134) 

 

 

(S135) 

 (S136) 

Quadrant IV.   

 

(S137) 

 
(S138) 

 

 

(S139) 

 (S140) 
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C. Combining Dominance and Resolvability Assumptions 

Derivation Of Critical Points Assuming Both Dominance And Resolvability 
The half-maximal critical points when a system is resolvable (Figure S6B, eqs S85 and 

S99) can be further simplified when dominance assumptions are made. When KAB >> [A]t 
(Quadrants I and III),   

 
(S141) 

When KAB << [A]t, as in Quadrants II and IV, 

 
(S142) 

For the TI50s under dominant and resolvable conditions, when KBC >> [C]t (Quadrants I and II), 

 
(S143) 

Finally, when KBC << [C]t (Quadrants III and IV), 

 
(S144) 

Conceptual Framework In Terms Of Dominant Points 
Combining both dominance and resolvability assumptions yields the simplified 

framework shown in Figure S10, which combines expressions for half-maximal points with 
simplified [B]t,max expressions to understand each side of the curve in terms of its dominant 
critical parameter. Interestingly, each quadrant directly parallels the how binary equilibria are 
understood, such that dominant parameters alone can be used to infer critical values. When 
binding constants are dominant, they represent the half-maximum, either the TF50 or TI50. When 
concentrations are dominant, they represent the maximum, which can be an inflection point. 
Though Quadrant I does not have a dominant concentration, its maximum can be expressed as a 
simple function of its binding constants.. 

 
Figure S10. Dominant Parameter Conceptual Framework for Non-Coopertive Equilibria. In non-cooperative ternary 
complex equilibria, the Kd’s approximate the TF50 and/or TF50’s and the concentrations template the [B]t,max point(s).    
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D. Error In The Noncooperative Framework When The Resolvability Assumption Does 
Not Hold 

 
Figure S11. (A)  Percent error of TF50 (red) and TI50 (blue) approximations from Figure S10 as a function of the ratio 
of the dominant parameters (here equivalent to the ratio of the parameter sums) for each Quadrant. (B)  A physical 
picture of how resolvability breakdown affects the roles of the dominant parameters in the noncooperative framework 
(Figure S10):  dominant Kd’s coalesce into the maximum while dominant concentrations remain at the maximum. 

Presented below is a general treatment of the error in utilizing the expressions derived 
assuming both dominance and resolvability (Figure S10, Table S1) when the resolvability 
assumption does not hold. Figure S11A, which plots the results of this analysis, shows that the 
largest resolvability-based error occurs when binding constants are dominant, whereas the least 
error occurs when concentrations are dominant. For this reason, Quadrant I conditions appear to 
require a difference of approximately two orders of magnitude to assure resolvability, Quadrants 
II and III conditions require one order of magnitude, and Quadrant IV is always resolvable.    

The behavior of the dominant parameters under increasingly non-resolvable conditions is 
described in Figure S11B. Dominant concentrations are not affected by the resolvability 
assumption and consistently approximate [B]t,max. Dominant Kd’s, however, begin to coalesce 
into the maximum as the conditions become increasingly irresolvable. This can be understood in 
terms of the bounds of the parameter sums, which have been shown to lie between the [B]t,max 
and the TF50 or TI50 (Figure S7). 

The relative error associated with the physical picture in Figure S10 when the 
resolvability assumption does not hold can be calculated by dividing the difference between the 
irresolvable and resolvable TF50 or TI50 from Table S1 by the irresolvable TF50 or TI50 (here the 
irresolvable values represent the “true” values, when only dominance is assumed):  

 
(S145) 

and 

 
(S146) 
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As detailed below, these equations were rearranged to define the relative error as a 
function of the ratio of larger dominant term (KBC or [C]t by convention) over the smaller 
dominant term (KAB or [A]t by convention). 

Quadrant I.   
The Quadrant I error associated with resolvability can be defined as  

 

 (S147) 
Subtracting terms in the numerator and multiplying both the numerator and the denominator by 
1/KAB yields 

 

 (S148) 
By distributing this fraction, we were able to obtain the relative error for the TF50 in Quadrant I 
in terms of the ratio of KBC/KAB, 

 

(S149) 

In an exactly analogous manner, we were able to obtain the error in the TI50 of Quadrant I, 
defined as 

 
(S150) 

which can be rearranged to 

 

(S151) 

Quadrant II.   
The error associated with resolvability in Quadrant II can be simplified to a simple 

expression in terms of KBC/[A]t for both the TF50, 

 

(S152) 
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as well as the TI50, 

 
(S153) 

Quadrant III.   
The resolvability-associated error in Quadrant III can be expressed in terms of the ratio of 

the dominant parameters ([C]t/KAB) for both the TF50, 

 

(S154) 

and the TI50, 

 
(S155) 

Quadrant IV.   
The error associated with the resolvability assumption in Quadrant IV systems is zero for 

both the TF50,  

 

(S156) 

and the TI50, 

 
(S157) 
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E. Error in the Noncooperative Framework When the Dominance Assumption Does Not 
Hold 

As detailed below, Figure S12A plots the general expressions for the error associated 
with using the simple critical parameter expressions derived using both the dominance and 
resolvability assumptions (Figure S10, Table S1) when the dominance assumption does not hold. 
In all quadrants, a difference between a Kd and concentration only has to be an order of 
magnitude for the dominance assumption to remain valid, and the error associated using the 
Figure S10 framework when dominance is not present is less pronounced than when resolvability 
assumptions are not satisfied.  

 
Figure S12. (A)  Percent error of TF50 (red) and TI50 (blue) approximations from Figure S10 as a function of the ratio 
of the parameters associated with each binding event. (B)  A physical picture of how the breakdown of dominance 
affects the roles of the dominant parameters in the noncooperative framework (Figure S10): for each side of the curve 
where dominance breaks down, the TF50 or TI50 can be approximated via the parameter sum rather than a particular 
dominant parameter. 

The behavior of non-cooperative curves under non-dominant conditions can be 
qualitatively described as being between quadrants (Figure S12B). For example, when the 
parameters for the B-C binding event are similar (KBC ≈ [C]t), but the binding constant for the A–
B binding event is dominant (KAB >> [A]t), the conditions of the system are between Quadrants I 
and III. When there is no dominance for one binding event/side of the curve, then its respective 
TF50’s or TI50’s can be approximated by the parameter sum (see resolvable section above). 

The error associated with using the expressions in Figure S10 when the dominance 
assumption does not hold can be defined by dividing the difference between the resolvable TF50 
or TI50 obtained from Table S1 and the respective “purely resolvable” expression from Figure 
S6B divided by that same respective “purely resolvable” TF50 or TI50. Alternatively stated, 

 
(S158) 

and 

 
(S159) 
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These error expressions equations can be analyzed with respect to relative dominance of 
parameters by rearranging them to define the relative error as a function of the ratio of the larger 
term in the parameter sum (e.g., for the TF50: [A]t or KAB) over the smaller term in the parameter 
sum. This was done for both possibilities for TF50 and TI50; these general error treatments are 
presented below. 

Quadrant I & III  (assumes KAB >> [A]t):  

 
(S160) 

Quadrant II & IV  (assumes [A]t >> KAB):   

 
(S161) 

Quadrant I & II  (assumes KBC >> [C]t):   

 

(S162) 

Quadrant III & IV  (assumes [C]t >> KBC):   

 

(S163) 
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F. When Both Dominance and Resolvability Assumptions Cannot be Made 
When neither the dominance nor resolvability assumptions can be applied to a system, 

the shape of non-cooperative curves cannot be described using simple rules based on the roles of 
the parameters. Under these circumstances, all that can be known is that the parameter sums 
occur between the TF50 and TI50 and [B]t,max: 

 
Figure S7. See above. 

Because non-dominant, non-resolvable cases cannot be simply conceptualized, it 
becomes necessary to use the complete equation for non-cooperative curves (eq S61) to describe 
their behavior. Fortunately, conditions where there is no resolvability and no dominance in a 
system’s paramters equate to circumstances where all the parameters approximately equal (KAB ≈ 
[A]t ≈ KBC ≈ [C]t ). Statistically, such circumstances are unlikely, and for most literature analyzed 
herein both the resolvability and dominance assumptions hold, at least approximately. 
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Section 6. Cooperative Ternary Systems 

A. Cooperative Quadrant Overview 
As summarized and then derived below we have determined general simple expressions 

for the critical points [ABC]max, [B]t,max, TF50 and TI50 under cooperative conditions.  These 
expressions are very useful because the capture the essential information contained in ternary 
complex bell-shaped curve: the height ([ABC]max), the position([B]t,max), and the width(TF50 and 
TI50). 

Simplifying these expressions for the 4 different sets of relative conditions of a system 
allows one to understand these expressions, which elaborate the non-cooperative intuitive 
framework, derived above.  Overall we reduce 4 very complex equations to 16 very simple 
equations divided into 4 sets of system conditions (quadrants) and 2 cooperative regimes (α > 
αcrit, α < αcrit). 
Table S2. Critical values for cooperative ternary equilibria assuming dominance without resolvability. 

WIDTH	  PERTURBATION	  REGIME	  (α	  >	  αcrit):	  

Q [B]t,max [ABC]max TF50 TI50 

I 
 

KABKBC  
   

II  
 

 
 

III  
 

  

IV   
   

[C]t 1+α( )  

 

HEIGHT	  PERTURBATION	  REGIME	  (α	  >	  αcrit):	  

Q [B]t,max [ABC]max TF50 TI50 

I 
 

KABKBC  
 

  

II  
   

III  
   

IV     
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Quadrant I Overview 
When α = 1 (Orange curves, Figure S13A–D), Quadrant I systems do not form 

appreciable ternary complex because α < αcrit.  With negative and positive cooperativity, the 
height scales linearly with cooperativity while the curve shape remains unchanged (red, cyan, 
green and blue curve, Figure S13A–D). With sufficient positive cooperativity (α > αcrit), 
however, the height of the cure begins to plateau (Figure S13B and C) and the width begins to 
scale with cooperativity (Figure S13B and D). The TF50 will inversely scale with cooperativity 
until [L]t/2 is approached . 

 
Figure S13. (A) Additional dimension (z-axis) of cooperativity (α) overlaid on top of non-cooperative Quadrant I 
(orange line) curve (i.e. [ABC]max (y-axis) vs [B]t (x-axis)). (B) The front view of (A) shows the dual width/height effect 
of cooperativity and the transition between them (when α ≈ αcrit). (C) The side view of (A) isolates the height effect of 
cooperativity in terms of the TPF. (D) The top view of (A) isolates the width effect of cooperativity in terms of TF50 and 
TI50. (A assumed to be the limiting reagent in this simulation)  

Table S3. Critical values for cooperative ternary equlibria in Quadrant I. 
[B]t,max [ABC]max TF50 TI50 

WIDTH	  PERTURBATION	  REGIME	  (α	  >	  αcrit):	  

 
KABKBC  

   

HEIGHT	  PERTURBATION	  REGIME	  (α	  <	  αcrit):	  

 
KABKBC  

 
  

NON-COOPERATIVE	  (α	  =	  1):	  

 
KABKBC  
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Quadrant II Overview 
When α = 1 (Orange curves, Figure S14A–D), Quadrant II systems do not form 

appreciable ternary complex because α < αcrit. With negative and positive cooperativity, the 
height scales linearly with cooperativity while the curve shape remains unchanged (red, cyan, 
green and blue curves, Figure S14A–D). With sufficient positive cooperativity (once α > αcrit), 
however, the height of the cure begins to plateau (Figure S14B and C) and the width begins to 
scale with cooperativity (Figure S14B and D). If [L]t = [A]t, then the TF50 is a constant 
throughout (shown).  If [L]t = [C]t, then the TF50 will inversely scale with cooperativity until 
[C]t/2 is approached (not shown). 

 
Fig, S14. (A) Additional dimension (z-axis) of cooperativity (α) overlaid on top of non-cooperative Quadrant II (orange 
line) curve (i.e. [ABC]max (y-axis) vs [B]t (x-axis)). (B) The front view of (A) shows the dual width/height effect of 
cooperativity and the transition between them (when α ≈ αcrit). (C) The side view of (A) isolates the height effect of 
cooperativity in terms of the TPF. (D) The top view of (A) isolates the width effect of cooperativity in terms of TF50 and 
TI50. (A assumed to be the limiting reagent in this simulation) 

Table S4. Critical values for cooperative ternary equilibria in Quadrant II. 
[B]t,max [ABC]max TF50 TI50 

WIDTH	  PERTURBATION	  REGIME	  (α	  >	  αcrit):	  

 
 

 
 

HEIGHT	  PERTURBATION	  REGIME	  (α	  <	  αcrit):	  

 
   

NON-COOPERATIVE	  (α	  =	  1):	  

 
KABKBC  
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Quadrant III Overview 
When α = 1 (orange curves, Figure S15A–D), Quadrant III systems form near 

quantitative ternary complex since α > αcrit. With positive cooperativity, the height does not 
change appreciably while the TI50 scales linearly with α and the TF50 scales inversely with α until 
[A]t/2 is approached (green, blue, and purple curves; Figure S15A–D). With negative 
cooperativity, however, the width and height both decrease until α < αcrit, at which point the TF50 
and TI50 plateau at S200 while the height scales linearly with cooperativity (red and cyan curves 
Figure S15A–D). 

 
Figure S15. (A) Additional dimension (z-axis) of cooperativity (α) overlaid on top of non-cooperative Quadrant III 
(orange line) curve (i.e. [ABC]max (y-axis) vs [B]t(x-axis)). (B) The front view of (A) shows the dual width/ height effect 
of cooperativity and the transition between them (when α ≈ αcrit). (C) The side view of (A) isolates the height effect of 
cooperativity in terms of the TPF. (D) The top view of (A) isolates the width effect of cooperativity in terms of TF50 and 
TI50. (A is the limiting reagent in this quadrant) 

Table S5. Critical values for Cooperative ternary equilibria in Quadrant III. 
[B]t,max [ABC]max TF50 TI50 

WIDTH	  PERTURBATION	  REGIME	  (α	  >	  αcrit):	  

  
   

[C]t 1+α( )  

NON-COOPERATIVE	  (α	  =	  1):	  

 
 

  

HEIGHT	  PERTURBATION	  REGIME	  (α	  <	  αcrit):	  
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Quadrant IV Overview 
When α = 1 (orange curves, Figure S16A–D), Quadrant IV systems form quantitative 

ternary complex. With positive cooperativity, the height and TF50 do not change while the TI50 
scales linearly with α (green, blue, and purple curves; Figure S16A–D). With negative 
cooperativity, however, the width and height both decrease until α < αcrit, at which the TF50 and 
TI50 plateau at S200 while the height scales linearly with cooperativity (red and cyan curves; 
Figure S16A–D). 

 
Figure S16. (A) Additional dimension (z-axis) of cooperativity (α) overlaid on top of non-cooperative Quadrant IV 
(orange line) curve (i.e. [ABC]max (y-axis) vs [B]t(x-axis)). (B) The front view of (A) shows the dual width/ height effect 
of cooperativity and the transition between them (when α ≈ αcrit). (C) The side view of (A) isolates the height effect of 
cooperativity in terms of the TPF. (D) The top view of (A) isolates the width effect of cooperativity in terms of TF50 and 
TI50. (A is the limiting reagent in this quadrant) 

Table S6. Critical values for Cooperative ternary equilibria in Quadrant IV. 
[B]t,max [ABC]max TF50 TI50 

WIDTH	  PERTURBATION	  REGIME	  (α	  >	  αcrit):	  

  
   

[C]t 1+α( )  

NON-COOPERATIVE	  (α	  =	  1):	  

  
  

HEIGHT	  PERTURBATION	  REGIME	  (α	  <	  αcrit):	  
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B. General Solution to Cooperative Ternary Equilibria 

 
Figure S17. Algebraic solvability depends on the “direction” of a given function. (A) When defined as a function of 
[B]t, [ABC] is algebraically unsolvable, and its value can only be defined generally at [B]t,max (blue dot). (B) Because 
[B]t can be expressed as a function of [ABC], and we can also express [ABC] at any point as a fraction of [ABC]max, 
we can frame an analytical solution for cooperative ternary equilibria “backwards” (i.e., for [B]t as a function of 
[ABC]max). 

Though we have demonstrated that the cooperative ternary complex cannot directly be 
solved for algebraically (Figure S17A), the unsolvable cooperative [ABC] quintic polynomial eq 
S13 can be rearranged by collecting the [B]t terms, yielding a quadratic polynomial in [B]t, 
which can be solved to yield  

 

(S164) 

Thus, the inverse case, where [B]t is a function of [ABC], is soluble, because algebraic 
insolubility is inherently directional (Figure S17). Each root of eq S164 reflects an expression for 
one side of the cooperative bell-shaped curve; the subtracted form represents the left side of the 
curve and the summed form the right side. Because we know the range of [ABC]s generally for 
every ternary complex curve (0 to [ABC]max), we can also obtain a [B]t value for each point of 
the curve. By obtaining a value for [ABC]max in a given curve, dividing it by two, and inserting it 
into eq S164, the TF50 and TI50 can be obtained for any cooperative curve. Of course, this 
method will also yield the value of any fractional [ABC]max value, and is the method used to 
create the Excel sheet associated with this paper. 
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C. Understanding the Height of the Cooperative Ternary Complex Curves  
For ternary systems in which autoinhibition begins at concentrations of [B]t below those 

at which the limiting terminal species is fully saturated, a high proportion of A or C will not 
participate in ternary complex, even at the curve maximum ([B]t = [B]t,max). The fraction of the 
limiting reagent that participates in ternary complex at [B]t,max for a given set of starting 
parameters is expressed by the ratio [ABC]max/[L]t, termed the ternary partition fraction, or TPF, 
where [L]t is the concentration of the limiting terminal reagent (A or C). Similarly, [X]t 
represents the non-limiting, or excess terminal reagent (A or C). Because many of the 
cooperative ternary complex expressions rely on knowing at system’s TPF, we have derived 
simple expressions to calculate it, both approximately and exactly. 

Derivation of an Approximate TPF Expression 
In order to understand what parameters have the greatest effect on the TPF, we first 

replace the terms in the [ABC]max second-order polynomial, 

 

(S36) 

with relative concentration and binding constants (each of which is equivalent in Eq S36), 

 

(S165) 

where Kstrong and Kweak represent the smaller and larger binding constants, respectively. 
Assuming that Kweak >> Kstrong and that [X]t >> [L]t simplifies the above equation to 

 
(S166) 

Recognizing that [ABC]max cannot be greater than [L]t, and assuming that [X]t >> [L]t, the 
squared [ABC]max term can be dropped, simplifying the equation to 

 
(S167) 

Solving this for [ABC]max yields 

 
(S168) 

Dividing both sides by [L]t and rearranging gives 

 
(S169) 

which shows the relationship between the ternary partition function and the parameters α, [X]t, 
and Kweak. This equation implies that the TPF is maximal when  minimal when 

 and equal to ½ when  as shown in Figure S18. Thus, 
cooperativity and the excess reagent are positively associated with the fractional saturation, 
whereas the larger binding constant (Kweak) is negatively correlated with the fractional saturation. 
This provides a simple means for understanding the TPF in non-cooperative systems ( ), 
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where the TPF will be maximal only when (e.g., Quadrants III and IV) and 
minimal when (e.g., Quadrants I and II). Cooperativity, then, must be less than 1 to 
decrease the TPF in QIII/QIV systems and much greater than 1 to increase the TPF of QI/II 
systems.    

Notably, the simpler form of eq S169 is quite an accurate approximation of the general 

relationship between α and [ABC]max; based on the expansion of to 

, its value can only range between Kweak (when Kweak >> Kstrong) and 
4Kweak (when Kweak = Kstrong).  Similarly, the concentration estimate will be accurate to within a 
factor of 2 because the actual value of [X]t  – [L]t/2 can only range from [X]t (when [X]t >> [L]t) 
to [X]t/2 (when [X]t = [L]t). Therefore, even when the simplifying assumptions applied to eq 
S174 do not hold, the estimate provided by eq S169 cannot be in error by more than one order of 
magnitude. To demonstrate this, the maximum error cases are all derived independently in 
Section 6E, below. 

 
Figure S18. The height ([ABC]max) of cooperative ternary complex bell-shaped curves can be conceptually 
understood using αcrit which defines the cooperativity at which [ABC]max  is half maximal.  Additionally, this term 
divides ternary complex behavior into two regimes where when α < αcrit [ABC]max scales linearly with α and when α > 
αcrit [ABC]max does not change greatly with α.   

In general the effects of cooperativity can be understood in terms of the expression 
 where we define when α < αcrit changes in cooperativity scale linearly with 

[ABC]max and when α > αcrit the [ABC]max begins to plateau and cooperativity has very little 
effect on [ABC]max.  This simplification relies on their being both an excess reagent and weaker 
binding constant. We treat the error in eq 169 when these assumptions do not hold, and derive an 
exact expression for the αcrit in the next section. 

Derivation of an Exact αcrit Expression 
Equation S36 solved for [ABC]max, 

  

(S37) 
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is similar to the form of the general solution for a two-component reversible binding interaction, 
such as  

 
(S170) 

where R and S represent the receptor and substrate. [A]t and [C]t in eq S37 correspond to [R]t 
and [S]t, respectively, and the binary Kd corresponds to 

  

KAB + KBC( )2

α
 (S171) 

in eq S37. As demonstrated in eqs S83-S85, at the half-maximal (or half-saturation) point in 
binary binding (i.e., [RS]/[R]t), 

 
(S85) 

which assumes that [R]t is the limiting reagent. Collecting all the terms gives 

  
(S172) 

which holds for a binary binding system at the half-maximal point. The corresponding ratio for 
eq S37 replaces the Kd in the above equation with eq S171 and [R]t and [S]t with [L]t and [X]t, 
respectively, resulting in 

  

(S173) 

Because of the correspondence between eqs S37 and S170, the above equation is true 
when [ABC]max/[L]t = 0.5, just as Eq S172 is true when [RS]/[R]t = 0.5. Thus, Eq S169 can be 
rewritten using this exact ratio, 

  

(S174) 

and this represents a general expression for the αcrit in that it does not require assumptions 
concerning the relative values of the concentrations or binding constants. If such assumptions are 
made, this equation reduces to eq S169.  
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D.  Understanding the Width of the Cooperative Ternary Complex Curves  

Calculating the TF50 the TI50 when α > αcrit  

General TF50 Expression 

The TPF approaches 1 when the product of α and [X]t is greater than Kweak. Thus, excess 
of either terminal species (Quadrants III/IV) or the product of α and [X]t (Quadrants I/II with 
high cooperativity) will result in a curve that is conceptually similar to Quadrants III and IV. In 
these quadrants, for all [B]t < [B]t,max, nearly all bound limiting reagent is in ternary complex (we 
define limiting reagent as A in eqs S175–179 below, in order to relate them to the original 
system of equations, eqs S1–6). The ternary complex outcompetes the binary complex either 
because there is such an excess of the [C]t species (which would be equal to [X]t in these cases) 
or because cooperativity is so high that it partitions all bound species into ternary rather than 
binary complexes. Thus, [ABC] >> [AB] for α > αcrit systems, and [AB] can be removed from 
eqs S1–6, yielding 

 (S175) 

 (S176) 

 (S177) 

 
(S178) 

and 

 
(S179) 

This system of equations can first be solved for [B]t and simplified by substituting [L]t/2 
for [ABC], which specifies the [B]t at which curve is half-maximal since [ABC]max approaches 
the limiting reagent, [L]t, as the TPF nears 1. This simplifies the solution to 

  
(S180) 

where KLim and KXS are the binding constants associated with the limiting reagent and excess 
reagents, respectively. When the α > αcrit , then eq S173 must be greater than 1. Thus, the 

 term is greater than KLim and eq S180 can be simplified to 

 
(S181) 

As α increases, the second and third terms will approach 0, and  is the TF50 limit as  α → ∞.  

General TI50 Expression 

When the α > αcrit , the TI50 must be greater than both KAB and KBC because 1) in systems 
where the largest parameter is a concentration (Quadrant III/IV-type systems), the TI50 is defined 
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by this concentration and it will be larger than either of the Kds and 2) in systems where the 
largest parameter is a Kd, it will require pronounced cooperativity to achieve a high TPF (eq 
S169), which will widen the curve to the point where the cooperative TI50 is greater than the Kd 
that defined the TI50 in the non-cooperative curve. Because the TI50 occurs well beyond both Kds, 
little free terminal species occur, as all A and C are bound into binary or ternary complexes. 
Thus, free terminal species can be ignored in eqs S1–6, resulting in the following system of 
equations 

    
(S182) 

 
(S183) 

 
(S184) 

and 

 
(S185) 

By solving these equations for [B]t in terms of measurable parameters and substituting [L]t/2 to 
define [B]t as the half-maximal point, we obtain  

 (S186) 

Quadrant I/II Simplification 

In Quadrant I, eq S181 can be simplified to  

 (S187) 

based on the fact that, under these conditions, KXs/([X]t-[L]t/2) >> 1. Additionally given the fact 
in this Quadrants αcrit ≈ Kweak/([X]t – [L]t/2) and Kweak is equivalent to KBC, we can simplify eq 
S187 to 

 (S188) 

Quadrant II simplification is more complicated. If A is the limiting reagent, the TF50 is 
equivalent to [A]t/2, regardless of the amount of cooperativity. If C is the limiting reagent, then 
eq 181 must be used.   

In Quadrants I and II, eq S186 can be simplified to 

 (S189) 

based on the fact that under these conditions α >> 1. Additionally, given the fact in these 
Quadrants αcrit ≈ Kweak/([X]t – [L]t/2) and Kweak is equivalent to KBC, we can simplify eq S189 to 

 (S190) 

Quadrant III/IV Simplification 

Equation S181 can be simplified based on Quadrant III/IV assumptions that [X]t is at 
least one order of magnitude greater than either Kd or [L]t. This implies that the last term must be 
at least one order of magnitude smaller than the second term. Additionally it is known that [X]t is 
equivalent to [C]t, and by extension that [L]t is equivalent to [A]t. Thus, eq S181 simplifies to 
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(S191) 

In Quadrants III and IV, [X]t is [C]t  and it is known that [C]t >> [A]t; thus, eq S186 
simplifies to  

 (S192) 

Calculating the TF50 the TI50 when α < αcrit  
As the system approximates a competition equilibrium, where little [ABC] forms 

relative to free and binary species. In this system, the laws of mass action are the same as in the 
ternary complex model, 

  
KAB = [A][B]

[AB]
,  (S4) 

  
KBC = [B][C]

[BC]
,  (S5) 

and 

  

KABKBC

α
= [A][B][C]

[ABC]
,  (S6) 

but the [ABC] term is removed from the conservation of mass equations, 

  [A]t = [A]+ [AB],  (S193) 

  [B]t = [B]+ [AB]+ [BC],  (S194) 
and 

 (S195) 

Solving this system of equations for [B]t yields 

 (S196) 

In order to constrain [B]t as a half maximal point, [ABC] must be substituted for an 
[ABC]max/2 expression. Because  is a limiting condition, it can be used to simplify 
[ABC]max prior to substitution. As α approaches zero in the quadratic polynomial defining the 
magnitude of the maximum, 

  

[ABC]max
2 − [ABC]max [A]t + [C]t +

KAB + KBC( )2

α

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ [A]t [C]t = 0,   (S36) 

the  term approaches zero most rapidly and can be ignored. In addition, the [A]t and 
[C]t terms contribute negligibly to the coefficient of [ABC]max, simplifying the equation to 

 

(S197) 
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[ABC]max can then be approximated in the  limit as 

 

(S198) 

This [ABC]max expression divided by 2 can then be substituted into eq S196. After the limit of 
this expression is taken as , the result is 

 

(S199) 

where the difference is the TF50, the sum is the TI50, and [B]t,max is Eq 34. This can be simplified 
based on quadrant assumptions as shown below. In order to examine all the relationships present 
in this equation, [B]t,max should be replaced with the eq 34 expression. After rearranging, this 
yields 

 (S200) 

Quadrant I Simplification 

The first two terms in eq S200 can be eliminated because they are multiplied by the non-
dominant concentrations. In addition, the third term can be approximated as KBC, assuming 
resolvability. Among the terms following the ± symbol, [A]t and [C]t can be ignored, and 

 can be approximated as KBC, again assuming resolvability. Thus, the simplified 

form of the half-maximal critical points using Quadrant I assumptions is 

   

(S201) 

where the difference is the TF50 and the sum the TI50. 

Quadrant II Simplification 

Assuming that KBC >> KAB, the second term of eq S200 multiplied by [A]t becomes ½, 

whereas the second term multiplied by [C]t becomes 0. All  terms can be 

approximated as KBC, which implies that the second term under the radical can be neglected. 
Finally, the  term can be eliminated. This results in  

   
(S202) 

which simplifies to 

   
(S203) 

and 
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(S204) 

SQuadrant III and IV Simplification 

In both Quadrants III and IV, [C]t is the excess reagent. Applying this assumption to eq 
S200 allows for the elimination of the first [A]t term as well as the third and fourth terms, since 

these will all be smaller than the second [C]t term. In addition, the [A]t and can 

be dropped from the coefficient of the radical for the same reason. This simplifies to 

   (S205) 

where the difference represents the TF50 and the sum the TI50.  
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E. Maxium Error in TPF Approximation 
Below we derive the expressions used calculate the maximum error for the TPF 

approximation above, which relate [ABC]max/[L]t to α[X]t/Kweak for all relative relationships of 
Kweak and Kstrong and [X]t and [L]t. In this manner we are able to generally describe the behavior 
of the TPF and  show that the the maximal error associated with the α[X]t/Kweak approximation is 
around a factor of 4–8. As can be seen in Figure S19 break down in the assumption that Kweak >> 
Kstrong leads to a small translation in the curve to the right (Figure S19,  dashed purple curve), 
while breakdown in the assumption that [X]t >> [L]t leads to a small change in the curve shape 
(Figure S19, dashed brown curve). Breakdown in both assumptions leads the both of these 
changes simultaneously (Figure S19, dotted green curve). 

 
Figure S19. Comparison of Simplified TPF expression (assuming Kweak >> Kstrong and [X]t >> [L]t,) overlaid with “maximum 
error” TPF curves derived when Kwea= Kstrong (dashed purple curve), when [X]t = [L]t, (dashed brown curve), when Kwea= Kstrong 
and [X]t = [L]t, (dotted green curve).   Overall the maximum error of the TPF approximation derived above is around a factor of 
4. 

As shown in Section 6, assuming Kweak >> Kstrong and [X]t >> [L]t, 

 
(S169) 

Maximum Error in Kweak >> Kstrong Assumption 
Second, assuming Kweak = Kstrong and [X]t >> [L]t, 

 

(S165) 

simplifies to 

 
(S206) 

because the squared term must be less than [L]t, which is less than [X]t. Solving for [ABC]max 
yields 
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(S207) 

Dividing both sides by [L]t and rearranging gives 

 
(S208) 

Maximum Error in [X]t >> [L]t Assumption:  
Third, assuming Kweak >> Kstrong and [X]t = [L]t, 

 

(S165) 

simplifies to 

 
(S209) 

Solving this for [ABC]max gives 

 
(S210) 

Dividing both sides by [X]t (which is equivalent to [L]t) and rearranging affords 

 

(S211) 

Because [X]t = [L]t, 

 

(S212) 

Maximum Simultaneous Error in Kweak >> Kstrong  and [X]t >> [L]t Assumptions:  
Fourth, assuming Kweak = Kstrong and [X]t = [L]t, 

 

(S165) 

simplifies to 

 
(S213) 

Solving this for [ABC]max gives 

 
(S214) 

Dividing both sides by [X]t and rearranging yields 

 

(S215) 

Recognizing that [X]t = [L]t, the above equation becomes 
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(S216) 

F. Error in TF50 and TI50 Approximations at αcrit 

 
Figure S20. Histrogram presentation of numerically calculated maximal error across all physically reasonable 
concentration and dissociation constant parameter space (nanomolar to milimolar) for (A) Eq S200(-) (TF50 α << αcrit), 
(B) Eq S181 (TF50 α >> αcrit ),  (C) Eq S200(+) (TI50 α << αcrit), and (D) Eq S186 (TI50 α >> αcrit). 

In order to characterize the error for the above and below αcrit TF50 and TI50 expressions, 
we estimated the relative error defined by calculating 

 (S217) 

and 

 (S218) 

when α = αcrit (due to the fact these expressions were derived assuming α >> αcrit or α << αcrit). 

Unfortunately, analytical expressions or error analogous to the ones used for the non-
cooperative TF50 and TI50s proved intractable. As an alternative, we numerically calculated the 
error associated with all biologically reasonable parameter space (nM to mM concentration and 
dissociation constant values) using the Mathematica 7 software package. The lists of errors for 
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was organized into histograms, where the x-axis represents 
the magnitude of error calculated (grouped in 0.01 (or 1% error) bins) and the y-axis represents 
the relative frequency with which this error in that bin was calculated (Figure S20). The [A]t 
values tested were 10-9, 10-8, 10-7, and 10-6; the [C]t values were 10-5, 10-4, 10-3, and 10-2. These 
were chosen to examine reasonable parameters without confusing the limiting and excess 
reagents, which were assumed to be [A]t and [C]t, respectively. As shown in Figure S20, the 
maximal possible error encountered for was 100%, 200%, 
50%, and 60%, respectively. 
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Section 7: Flowchart Describing the Use of Our Model 

 
Figure S21. Flow chart to guide investigators in the application of the mathematical models and conceptual 
framework presented in this manuscript to their experimental data. Readers should start at the upper left hand corner 
where, if complete information is known, the included Excel file can be used to simulate ternary complex curves with 
full annotation of our framework. If some parameters are unknown, the remaining portion of the flow chart guides 
estimation of those parameters using deductive reasoning based on comparison of our models and experimental 
data.  
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